

Test Report

Document No.	02617-22-0038 Copy No. 1 Number of pages 23
Apparatus	LV-Photovoltaic Fuse
Designation	1. NH03-630 A and 500 A gL/gG 2. NH02-400 A; 350 A; 315 A; 250 A and 200 A gL/gG 3. NH01-160 A gL/gG 4. NH00-160 A gL/gG
Serial Number	Test samples
Manufacturer	THS Industria e Comercio Ltda. Rua Sargento Francisco Rodrigues da Rosa, 534 - Cajuru do Sul Sorocaba – Sao Paulo, 18105-008 BRAZIL
Client	THS Industria e Comercio Ltda. R. Francisco Rodrigues da Rosa, 534 - Cajuru do Sul Sorocaba - Sao Paulo, 18105-008 BRAZIL
Date(s) of test(s)	07 February 2022
Tested by	IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH Landsberger Allee 378A 12681 Berlin GERMANY
Test(s) performed	Verification of breaking capacity (Test duty I1) at 800 V a.c.

The apparatus, constructed in accordance with the description, drawings and photographs incorporated in this document has been subjected to the series of proving tests in accordance with:

IEC 60269-2: 2013+AMD1: 2016

The fuses were capable of correctly breaking.

The results are documented in this test report. The ratings assigned by the Manufacturer are listed on the ratings page.

The document applies only to the apparatus tested. The responsibility for conformity of any apparatus having the same designations with that tested rests with the Manufacturer.

17 February 2022

Date

Christian Kruscha Test Engineer in charge Stefan Schwanck Approved by

Partial reproduction of this document is permitted only with the written permissions from CESI Group. The authenticity of this document is guaranteed by the integrity of hologram.

CESI

Notes

STL-Member

CESI Group members are founder members of the SHORT-CIRCUIT TESTING LIAISON (STL) which has been established in 1969. STL is a forum for voluntary international cooperation of testing organizations.

CESI Group Test Documents description

Type Test Certificate of

Issued for type tests of high voltage products (> 1 kV_{ac}; > 1,5 kV_{dc}), which have successfully been carried out in full compliance with the relevant specifications or standards and STL Guides valid at the time of the test. The Type Test Certificate consists of documents unequivocally identifying the test object and describes all conditions under which the tests were conducted. It gives evidence of the unobjectionable behavior of the test object during the tests in line with the normative documents applied as well as of the results of successful testing.

Test Certificate of (complete / selected) Type Tests

Issued if type tests of low voltage products ($< 1 \text{ kV}_{ac}$; $< 1,5 \text{ kV}_{dc}$) requested by the relevant product standard were passed. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Certificate of Design Verification

Issued for passed design verification tests according to IEC 61439. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Type Test Report

Issued for high and low voltage products if parts of selected type tests have been passed; those shall be carried out in full compliance with the relevant standards but (for high voltage products) do not fulfill all STL requirements for issuing a Type Test Certificate. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Test Report

Issued for all other tests on high and low voltage products which have been carried out according to specifications, standards and/or client instructions

On-Site Test Record

Issued as a record of results acquired during the on-site tests / measurements

Test Award

Can be additionally issued for all named types of test documents above if the tests to be referenced were passed

TEST REPORT NO. 02617-22-0038

SHEET 3

Cont	tents	Sheet
1.	Present at the test	4
2.	Test performed	4
3.	Verification of breaking capacity	5
3.1	Test laboratory	5
3.2	Normative document	5
3.3	Required test parameters	5
3.4	Test arrangement	
3.5	Test and measuring circuits	6
3.6	Test results	
4.	Photographs	10
5.	Oscillograms	11
6	Drawings / technical data sheets (provided by the client)	22

SHEET 4

1.	Present at the test	
Mr.		IPH test engineer in charge
2.	Test performed	

Verification of breaking capacity (Test duty I1) at 800 V a.c.

3. Verification of breaking capacity

3.1 Test laboratory

High-power test laboratory, high-current test bay

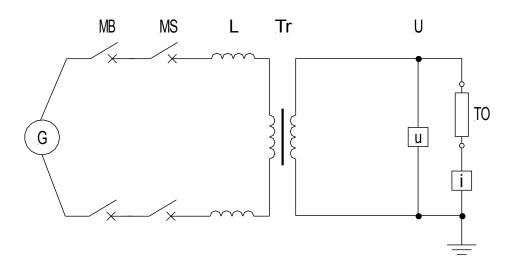
3.2 Normative document

IEC 60269-2: 2013+AMD1: 2016

3.3 Required test parameters

Power-frequency recovery voltage	V	800
Prospective current	kA	50
Initiation of arcing after voltage zero		65 90° el
Power factor		0.1 to 0.2
Test frequency	Hz	50
Maintained voltage after breaking	S	≥ 15
Number of tests		1 test for each test sample

3.4 Test arrangement


The breaking tests were performed with single-phase alternating current and with a single fuse. The fuse to be tested was mounted on a test rack in the normal service position.

3.5 Test and measuring circuits

Technical data of test circuits

Test requirement		Verification of breaking capacity	
Test No.		122 0674 to 122 0684	
Number of phases	(Test circuit)	2	
Number of poles/pha	ses (Test object)	1	
Test frequency	Hz	50	
Earthing conditions	Generator, grid	Not earthed	
	Short-circuit transformers	Earthed	

Tr

Short-circuit transformer

Current measurement

Voltage measurement

MB Master breaker
MS Making switch
L Current limiting reactor

Power supply

Figure 1: Test circuit diagram

Ε

Technical data of measuring circuits

Measuring point	Symbol in the oscillograms	Measuring quantity	Measuring sensor/device		
1	i	Breaking current	Rogowski measuring device		
2 u Voltage RC divider					
Recording instrument: AD3000 multichannel transient recorder system					

3.6 Test results

Type:

Test requirement: Test duty I1

Condition of test object before test: New

NH00 63 A gG

Test No.	122	0675	0676	0677
Test sample No.		1	2	3
Type of of fuse-link		NH3	NH3	NH2
Rated current of fuse-link	А	630	500	350
Test voltage	V	800	800	800
Prospective peak current	kA	107	107	107
Prospective breaking current I _p	kA	51.9	51.9	51.9
Power factor cos φ		0.25	0.25	0.25
Making angle	°el.	62.6	51.6	47.2
Initiation of arcing after voltage zero	°el.	97.6	85.4	71.0
Melting current i _s	kA	41.5	38.5	25.9
Cut-off current	kA	41.9	39.0	25.6
Melting time	ms	1.93	1.87	1.32
Arcing time	ms	3.68	4.21	4.74
Operating time	ms	5.62	6.09	6.07
Melting integral 10 ³	A ² s	1169	936	292
Arcing integral 10 ³	A^2s	1760	1577	655
Operating integral 10 ³	A ² s	2929	2513	947
Arcing energy	kVAs	93.9	93.8	57.8
Peak switching voltage	kV	1.77	1.81	1.71
Recovery voltage	V	823	819	818
Duration of power frequency recovery voltage	S	15	15	15
Fuse operated correct	y/n	у	у	у
Emission of flames or sand	y/n	n	n	n
Damages (external)	y/n	n	n	n
Operation of striker correct	y/n	у	у	У
Evaluation		ОК	ОК	OK

Notes:

OK - The fuse is capable of correctly breaking the prospective current

Test No. 122 0674: Current setting

SHEET 8

Test results (continued)

Test requirement: Test duty I1

Condition of test object before test: New

Type: NH00 63 A gG

Test No.	122	0678	0679	0680
Test sample No.		4	5	6
Type of of fuse-link		NH2	NH2	NH2
Rated current of fuse-link	А	315	400	250
Test voltage	V	800	800	800
Prospective peak current	kA	107	107	107
Prospective breaking current I _p	kA	51.9	51.9	51.9
Power factor cos φ		0.25	0.25	0.25
Making angle	°el.	57.8	58.1	51.8
Initiation of arcing after voltage zero	°el.	78.4	82.8	70.2
Melting current is	kA	24.4	29.4	20.5
Cut-off current	kA	25.0	29.1	20.9
Melting time	ms	1.14	1.37	1.02
Arcing time	ms	4.46	4.26	4.68
Operating time	ms	5.60	5.63	5.69
Melting integral 10 ³	A^2s	229	400	141
Arcing integral 10 ³	A^2s	624	866	396
Operating integral 10 ³	A^2s	853	1266	537
Arcing energy	kVAs	53.5	65.2	42.5
Peak switching voltage	kV	1.67	1.74	1.64
Recovery voltage	V	820	821	819
Duration of power frequency recovery voltage	S	15	15	15
Fuse operated correct	y/n	у	у	у
Emission of flames or sand	y/n	n	n	n
Damages (external)	y/n	n	n	n
Operation of striker correct	y/n	у	у	у
Evaluation		ОК	OK	ОК

Notes:

OK - The fuse is capable of correctly breaking the prospective current

SHEET 9

Test results (continued)

Test requirement: Test duty I1

Condition of test object before test: New

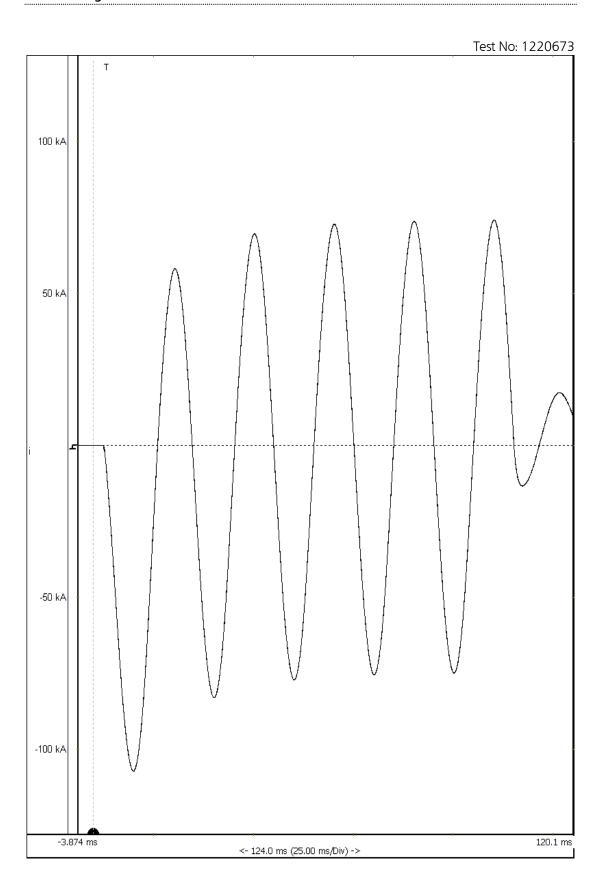
Type: NH00 63 A gG

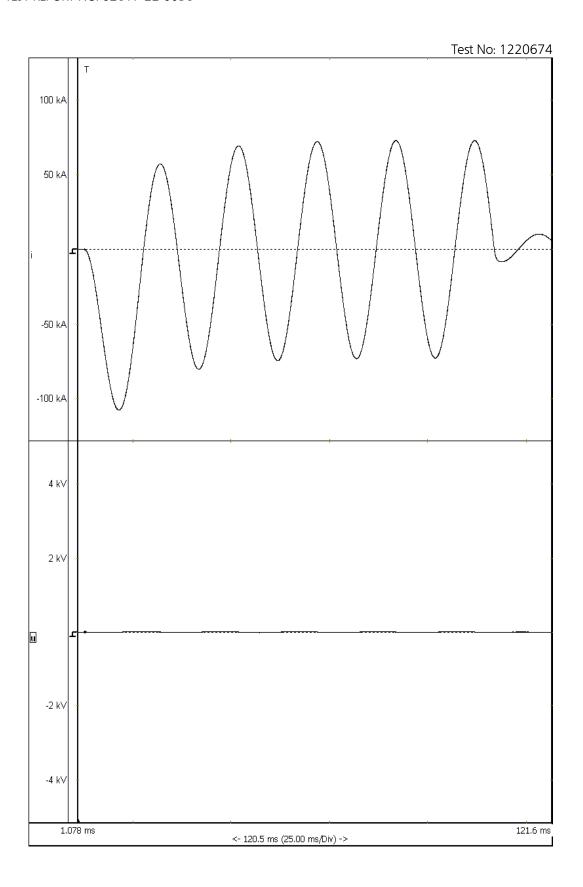
Test No.	122	0681	0682	0683
Test sample No.		7	8	9
Type of of fuse-link		NH2	NH1	NH00
Rated current of fuse-link	А	200	160	160
Test voltage	V	800	800	800
Prospective peak current	kA	107	107	107
Prospective breaking current I _p	kA	51.9	51.9	51.9
Power factor cos φ		0.25	0.25	0.25
Making angle	°el.	47.8	68.3	72.9
Initiation of arcing after voltage zero	°el.	65.4	79.6	84.5
Melting current is	kA	15.8	14.4	14.7
Cut-off current	kA	16.4	15.0	15.1
Melting time	ms	0.81	0.63	0.64
Arcing time	ms	5.06	4.27	4.26
Operating time	ms	5.88	4.89	490
Melting integral 1	0^3 A^2s	66.8	43.5	47.8
Arcing integral 1	0^3 A^2s	230	120	118
Operating integral 1	0^3 A^2s	297	164	166
Arcing energy	kVAs	31.1	20.0	20.7
Peak switching voltage	kV	1.57	1.82	1.82
Recovery voltage	V	816	823	825
Duration of power frequency recovery voltage s		15	15	15
Fuse operated correct	y/n	у	у	у
Emission of flames or sand	y/n	n	n	n
Damages (external)	y/n	n	n	n
Operation of striker correct	y/n	у	у	у
Evaluation		OK	ОК	OK

Notes:

OK - The fuse is capable of correctly breaking the prospective current

4. Photographs




Photo 1: Fuses after all tests, name plates

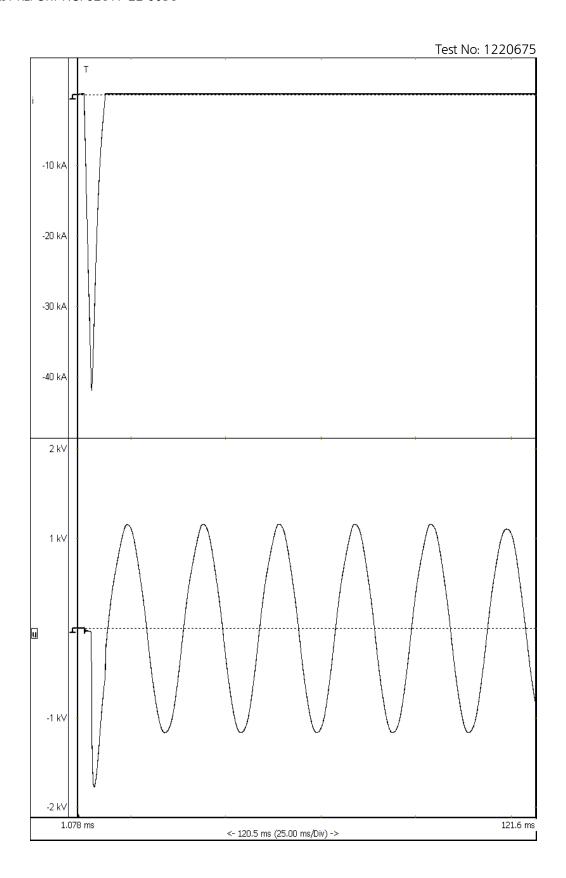
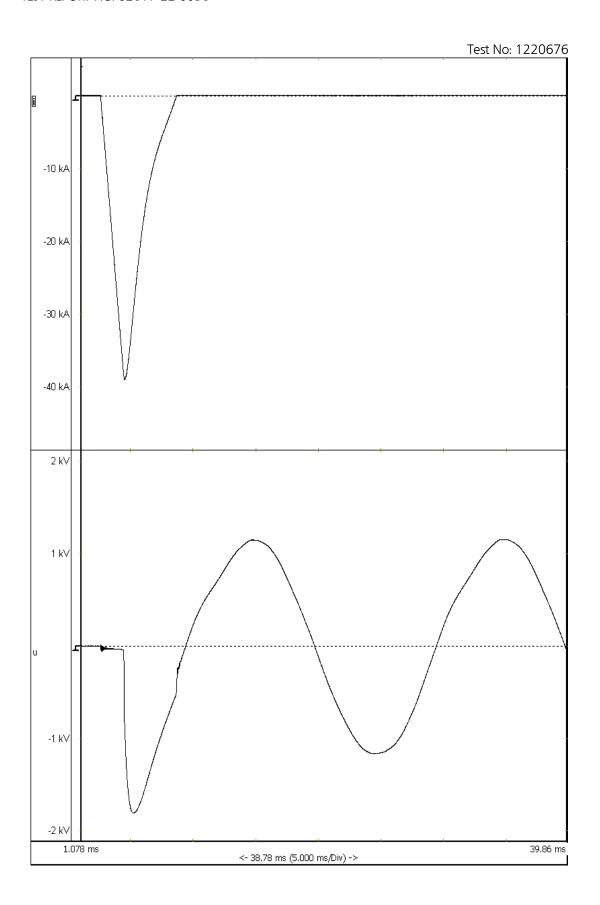
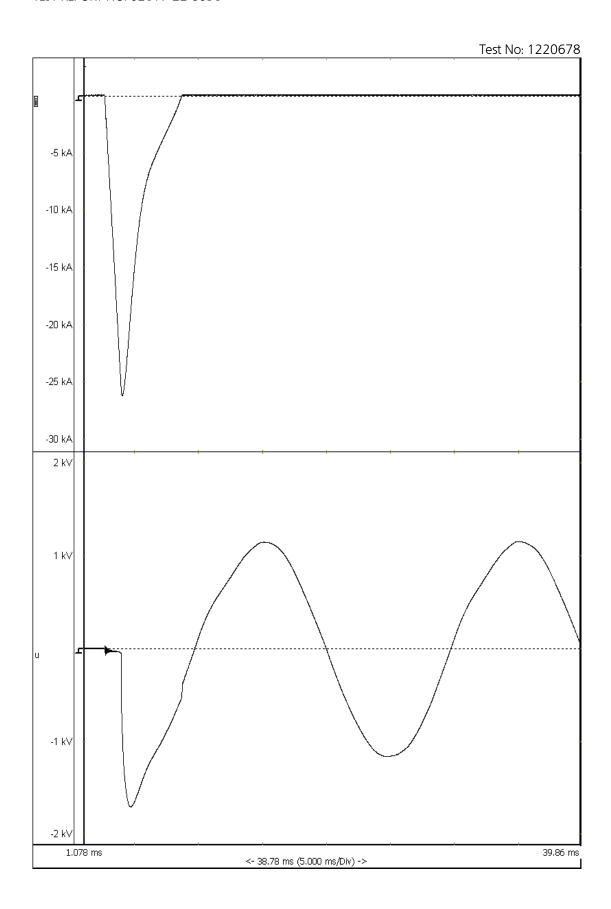
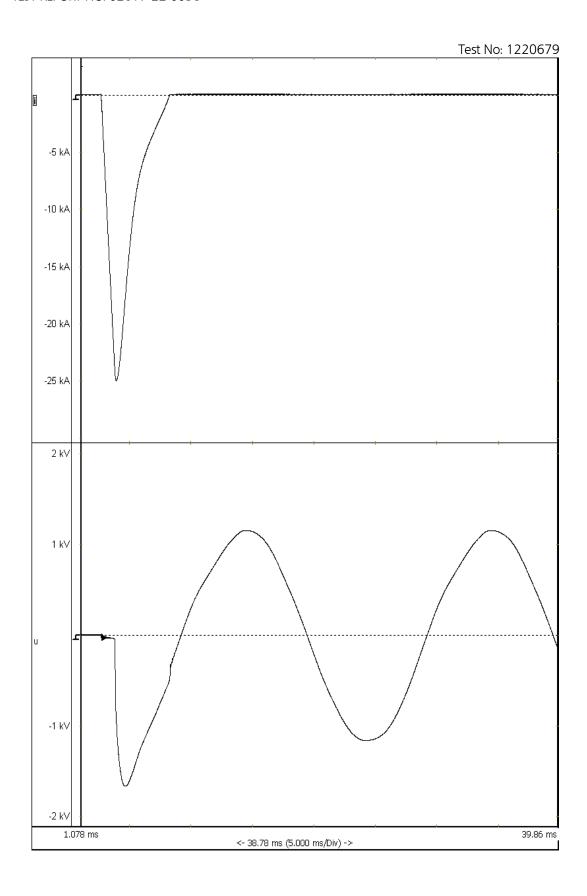
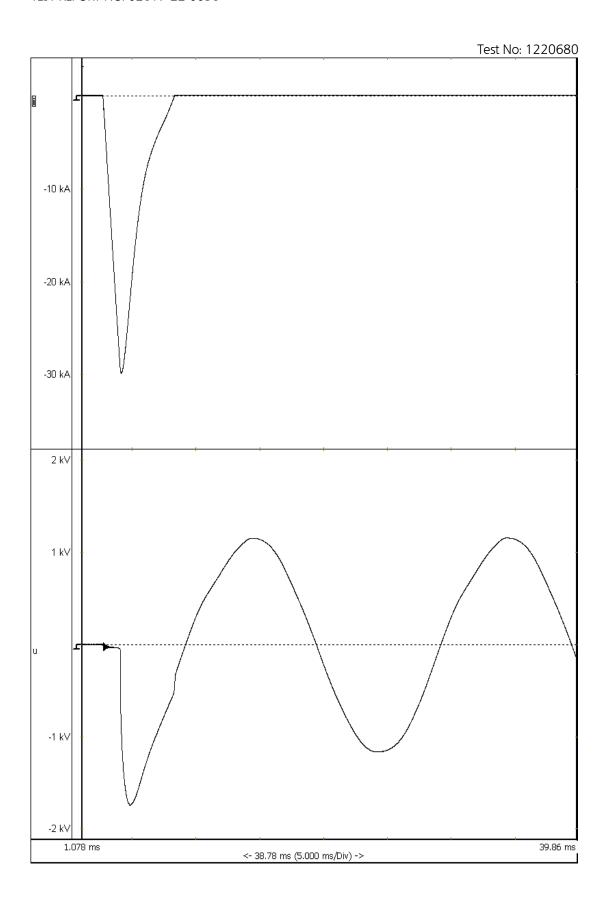


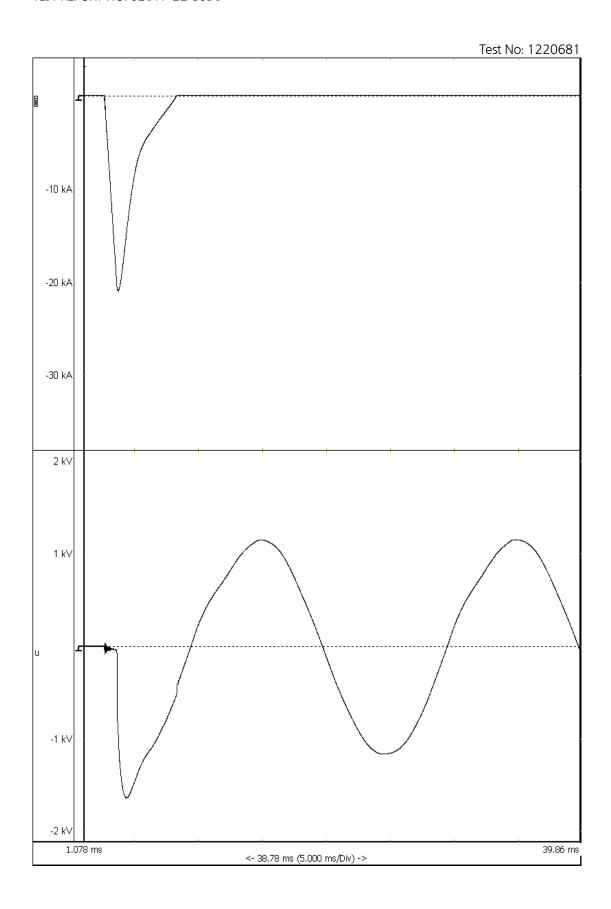
Photo 2: Fuses after all tests, rating plates

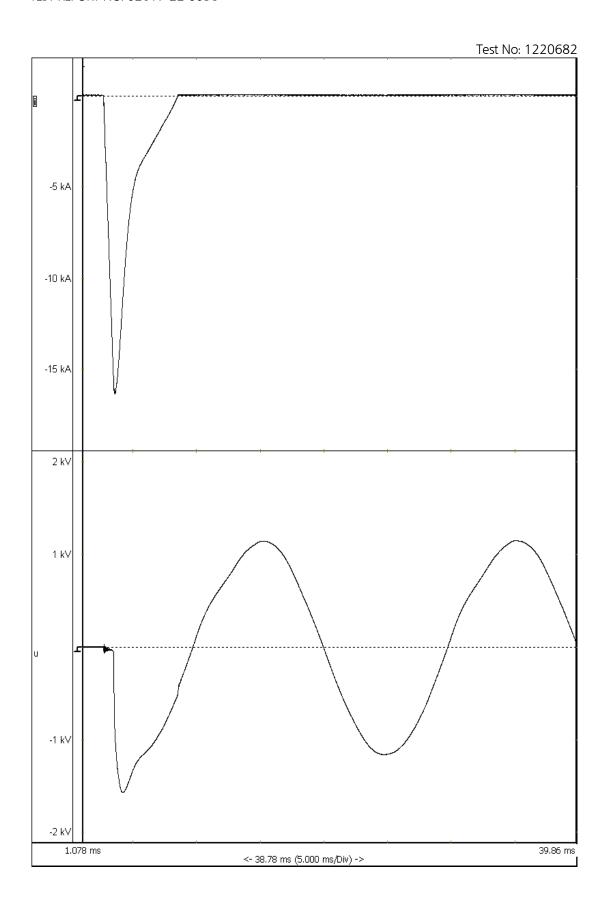

5. Oscillograms

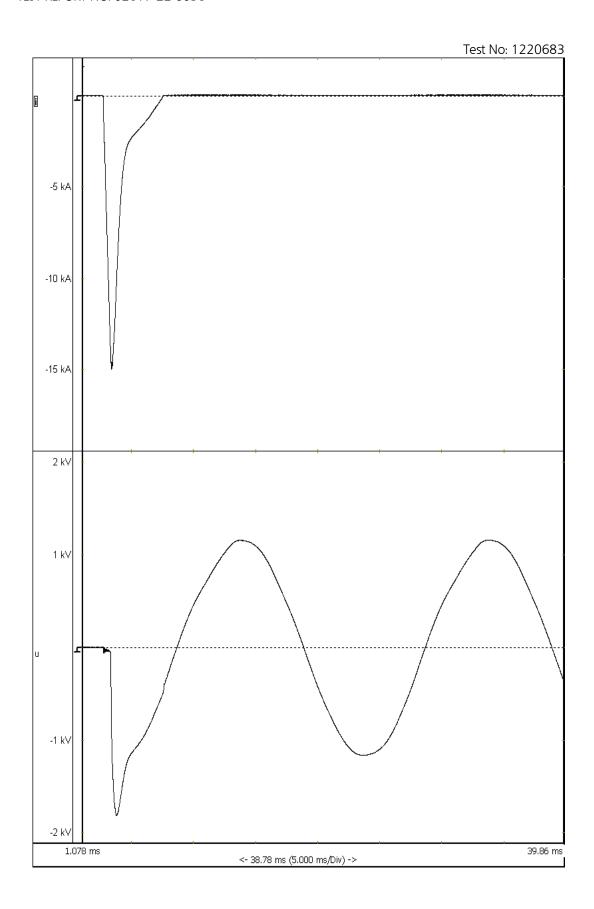


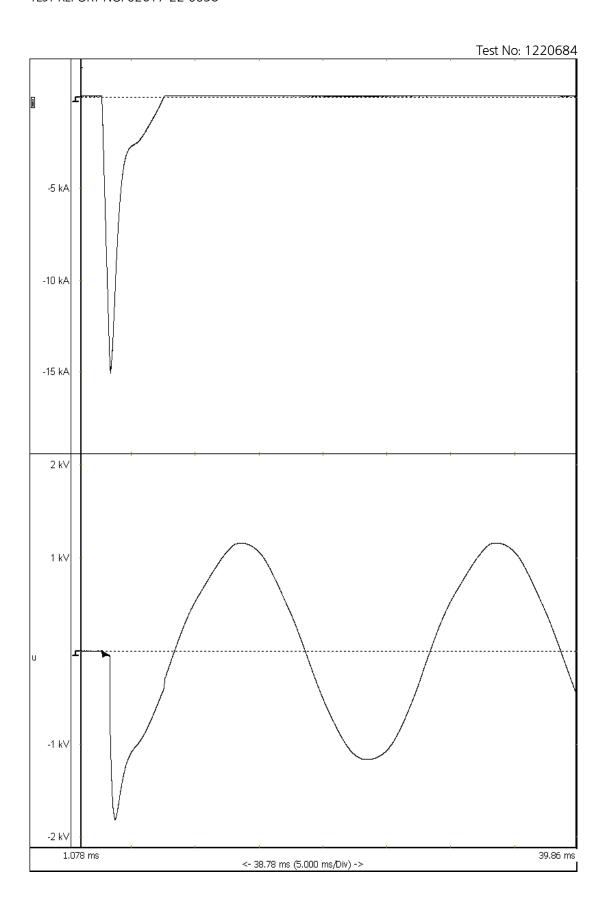


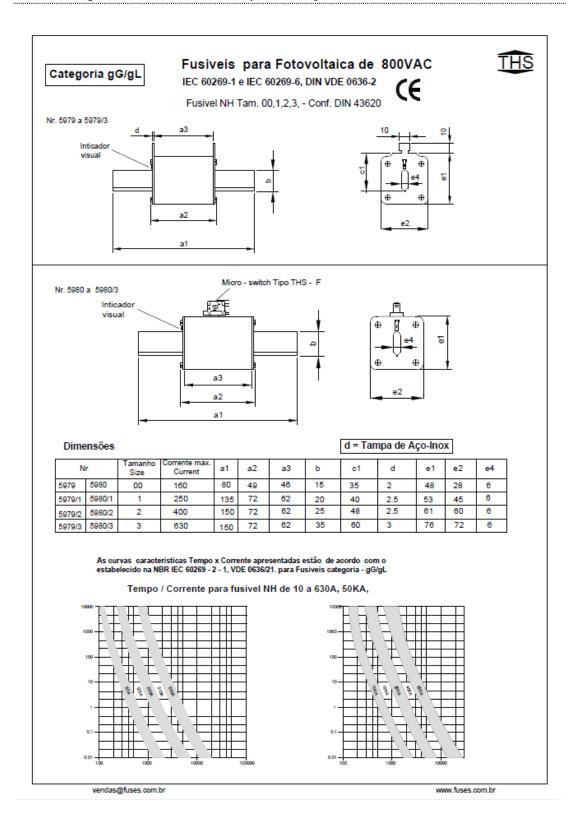












6. Drawings / technical data sheets (provided by the client)

